KLASIFIKASI TINGKAT KEPUASAN PELANGGAN PADA COLD N BREW COFFEE MENGGUNAKAN ALGORITMA NAÏVE BAYES

Main Article Content

Epenetus Calvin
Adi Nugroho

Abstract

The system for assessing the level of customer satisfaction in coffee selling cafes is still very rarely implemented so that superiors do not know the advantages or disadvantages felt by customers, both in terms of service, products and facilities. This research aims to apply the Naïve Bayes Classification method, and use the Naïve Bayes algorithm to make calculations easier, after which data processing is carried out using the Confusion Matrix method as a tool to measure algorithm performance and obtain results on assessing the level of customer satisfaction of Cold N Brew coffee, aspects which is assessed based on service quality, product quality, facilities and price. This research uses quantitative research methods and collects data by distributing questionnaires to customers. Based on the results of manual testing carried out with 68 training data, 58 "SATISFIED" results were obtained, and 10 "NOT SATISFIED" results were obtained. Data testing using the Confusion Matrix method on RapidMiner using the Naïve Bayes algorithm produces an accuracy rate of 81.25%. Based on the data processing that has been carried out, the Naïve Bayes method can be recommended for predicting the quality of customer satisfaction at Cold N Brew coffee.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
E. Calvin and A. Nugroho, “KLASIFIKASI TINGKAT KEPUASAN PELANGGAN PADA COLD N BREW COFFEE MENGGUNAKAN ALGORITMA NAÏVE BAYES”, JUKANTI, vol. 7, no. 2, pp. 189–199, Nov. 2024.
Section
Artikel

References

F. Abdel Rahman Shalaby, A. Wahidi, M. Prodi Ilmu Perpustakaan Fakultas Adab dan Humaniora UIN Raden Fatah Palembang, and D. Prodi Ilmu Perpustakaan Fakultas Adab dan Humaniora UIN Raden Fatah Palembang, “Pengklasifikasian Dan Penataan Ulang Buku Di Perpustakaan SDN 15 Gelumbang,” Pengabdian Kepada Masyarakat, vol. 1, no. 1, p. Volume 1-Nomor 1, 2019.

B. I. Saputro, “Penerapan Sistem Klasifikasi Perpustakaan Arkeologi di Perpustakaan Balai Arkeologi Daerah Istimewa Yogyakarta,” Berkala Ilmu Perpustakaan Dan Informasi, vol. 13, no. 2, p. 107, Dec. 2017, doi: 10.22146/bip.23453.

Y. Siska, “Penerapan Data Mining Dengan Algoritma Naïve Bayes Clasifier Untuk Mengetahui Tingkat Kepuasan Pelanggan Terhadap Pelayanan Servis Mobil (Studi Kasus: Katamso Service),” Majalah Ilmiah INTI, vol. 6, no. 3, p. volume 6-nomor 3, 2019.

V. Rohmatul Ula, A. Ahsanul Hayat, and I. Ahmad Dahlan Lamongan, “Meningkatkan Kepuasan Pasien Melalui Pelayanan Prima Dan Trust Pasien,” Jurnal Media Komunikasi Ilmu ekonomi, vol. 38, p. 1, 2021.

A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 1, 2023.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 8, no. 2, Oct. 2020, doi: 10.30646/tikomsin.v8i2.500.

Y. T. Samuel and K. Dewi, “Penggunaan Metode NAÏVE BAYES Dalam Mengukur Tingkat Kepuasan Pengguna Terhadap Online System Universitas Advent Indonesia The Use of Naïve Bayes Method in Measuring User’s Satisfaction With Adventist University of Indonesia’s Online System.” [Online]. Available: https://www.online.unai.edu.

N. J. Bano, R. Sukwadi, and A. Park, “Analisis Perbaikan Kualitas Layanan Bluemoon Container Café: Model Integrasi Analisis Sentimen dan Quality Function Deployment,” Jurnal INTECH Teknik Industri Universitas Serang Raya, vol. 8, no. 1, pp. 75–82, Jun. 2022, doi: 10.30656/intech.v8i1.4569.

G. C. Triasis, D. Arisandi, and T. Sutrisno, “Jurnal Ilmu Komputer Dan Sistem Informasi Analisis Kepuasan Penggunaan Aplikasi Shopee Menggunakan Algoritma Naïve Bayes,” no. Vol. 10 No. 1 (2022): JURNAL ILMU KOMPUTER DAN SISTEM INFORMASI.

N. Azwanti and E. Elisa, “Analisa Kepuasan Konsumen Menggunakan Algoritma C4.5,” SNISTEK 3, vol. 3, pp. 126–131, 2020.

S. Informasi and S. AKAKOM Yogyakarta, “Klasifikasi Data Mahasiswa Menggunakan Metode K-Means Untuk Menunjang Pemilihan Strategi Pemasaran Totok Suprawoto,” Jurnal Informatika dan Komputer, vol. 1, no. 1, 2016.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

S. Hendrian, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Faktor Exacta, vol. 11, no. 3, Oct. 2018, doi: 10.30998/faktorexacta.v11i3.2777.

Z. Fadilla, M. Ketut Ngurah Ardiawan, M. Eka Sari Karimuddin Abdullah, M. Jannah Ummul Aiman, and S. Hasda, Metodologi Penelitian Kuantitatif. [Online]. Available: http://penerbitzaini.com

D. Novianti, S. Nusa, M. Jakarta, and C. Sitasi, “Implementasi Algoritma Naïve Bayes Pada Data Set Hepatitis Menggunakan Rapid Miner,” vol. 21, no. 1, 2019, doi: 10.31294/p.v20i2.

N. Riyanah, S. Informasi, S. Tinggi, M. Informatika, D. Komputer, and N. Mandiri, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu (Implementation of Algorithms Naïve Bayes for Classification Recipients Help Letter Description Not Able),” vol. 2, no. 4, pp. 206–213, 2021.