CLUSTERING KUALITAS KINERJA PEGAWAI PADA NARUNA CAFE & RESTO MENGGUNAKAN ALGORITMA K-MEANS

Main Article Content

Corins Petricks Hematang
Ramos Somya

Abstract

The employee appraisal system at Naruna Cafe and Resto uses conventional, manual-based appraisal methods which are carried out subjectively by the direct supervisor without a clear evaluation framework so that the appraisal process is often not transparent and lacks objectivity, which causes dissatisfaction and injustice among employees. Clustering techniques can be used as an employee assessment to be more objective, consistent, and based on measurable data. This study aims to apply the K-Means Clustering method, as well as use the K-means algorithm to make it easier to perform calculations, after which the researcher performs processing using RapidMiner to obtain results on the performance quality assessment of Naruna Cafe and Resto employees. This study uses quantitative research methods and collects data based on the quality of employee performance as an object of research. This study produced clusters with very satisfactory work quality of as much as 1 data, clusters with satisfactory work quality of as many as 3 data, clusters with quite satisfactory work quality of as much as 4 data, clusters with unsatisfactory work quality of as much as 1 data, and clusters with unsatisfactory work quality as much as 5 data. From the data processing that has been done, it can be concluded that this research has succeeded in creating a quality group of employee performance at Naruna Cafe and Resto that can be used to view employee performance.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
C. P. . Hematang and R. Somya, “CLUSTERING KUALITAS KINERJA PEGAWAI PADA NARUNA CAFE & RESTO MENGGUNAKAN ALGORITMA K-MEANS”, JUKANTI, vol. 6, no. 2, pp. 188–197, Nov. 2023.
Section
Artikel

References

Brahmana, dkk. (2014). Pengaruh kualitas layanan dan kualitas produk terhadap kepuasan pelanggan dan loyalitas konsumen restoran happy garden Surabaya. Jurnal Manajemen Pemasaran, 2(1), 1-9

Reisandi, I., Daryana, Mulyati, F.S., & Fauzi, M. (2021). Implementasi Clustering K-Means terhadap penilaian kinerja karyawan PT XYZ. Jurnal Sosial dan Teknologi, 1(8), 757-767

F. H. Masruroh, S. Setiyowati, A. B. Hartono. (2020). The Implementation of Employee Performance Assessment using Clustering Analysis in PT ABC." Journal of Information Systems Engineering and Business Intelligence, 6(2)

Nasution, Y.R. & Eka, M. (2018). Penerapan algoritma K-Means clustering pada aplikasi menentukan berat badan ideal. ALOGARITMA: Jurnal Ilmu Komputer dan Informatika, 2(1), 77-81

Dhuhita, Windha. (2015). Clustering menggunakan metode k-means untuk menentukan status gizi balita. Jurnal Informatika, 15(2), 163

Oktara, P., Yulianti, L., & Fredricka, J. (2021). Analisis kinerja pegawai menggunakan alogaritma k-means pada dinas pendidikan dan kebudayaan kabupaten Bengkulu Tengah. Jurnal Media Infotama, 17(2)

Dewi, N.L.P.P., Purnama, I.N., & Utami, N.W. (2022). Penerapan data mining untuk clustering penilaian kinerja dosen menggunakan alogaritma k-means (studi kasus: STMIK Primakara). Jurnal Ilmiah Teknologi Informasi Asia, 16(2), 105-112

Muningsih, E. & Kiswati, S. (2015). Penerapan metode K-Means untuk clustering produk online shop dalam penentuan stok barang. Jurnal Bianglala Informatika, 3(1), 10-17

Regina, S., Sutinah, E., & Agustina, N. (2021). Clustering kualitas kinerja karyawan pada perusahaan bahan kimia menggunakan algoritma k-means. Jurnal Media Informatika Budidarma, 5(2), 573-582

P. Aruna, P. Aruna Kumari, R. Divakar. (2016). Evaluation of Clustering Algorithms in RapidMiner: A Comparative Study. International Journal of Emerging Trends in Engineering Research, 4(9)